
LoongArch ELF ABI specification
Loongson Technology Corporation Limited

Version 2.01

Table of Contents
Register Convention . 1

Aliases for return value registers . 1

Type Size and Alignment . 3

ELF Object Files. 4

EI_CLASS: File class. 4

e_machine: Identifies the machine. 4

e_flags: Identifies ABI type and version. 4

Relocations . 6

Program Interpreter Path. 13

Procedure Calling Convention. 14

Abbreviations . 14

Argument Registers . 14

ABI LP64D . 14

C Data Types and Alignment . 14

Argument passing . 14

Return values . 17

Stack . 17

Appendix: Revision History . 18

Register Convention
Table 1. General-purpose Register Convention

Name Alias Meaning Preserved across calls

$r0 $zero Constant zero (Constant)

$r1 $ra Return address No

$r2 $tp Thread pointer (Non-allocatable)

$r3 $sp Stack pointer Yes

$r4 - $r5 $a0 - $a1 Argument registers / return value registers No

$r6 - $r11 $a2 - $a7 Argument registers No

$r12 - $r20 $t0 - $t8 Temporary registers No

$r21 Reserved (Non-allocatable)

$r22 $fp / $s9 Frame pointer / Static register Yes

$r23 - $r31 $s0 - $s8 Static registers Yes

Table 2. Floating-point Register Convention

Name Alias Meaning Preserved across calls

$f0 - $f1 $fa0 - $fa1 Argument registers / return value registers No

$f2 - $f7 $fa2 - $fa7 Argument registers No

$f8 - $f23 $ft0 - $ft15 Temporary registers No

$f24 - $f31 $fs0 - $fs7 Static registers Yes

Temporary registers are also known as caller-saved registers. Static registers are also known as callee-
saved registers.

Aliases for return value registers

You may see the names $v0 $v1 $fv0 $fv1 in some very early LoongArch assembly code; they simply

alias to $a0 $a1 $fa0 $fa1 respectively. The aliases are initially meant to match MIPS convention with
separate argument / return value registers. However, because LoongArch actually has no dedicated return
value registers, such usage may lead to confusion. Hence, it is not recommended to use these aliases.

Due to implementation details, it may not be easy to give a register multiple ABI names for a given
downstream project. New programs processing LoongArch assembly should not support these aliases.
Portable LoongArch assembly should avoid these aliases.

NOTE

For toolchain components provided by the Loongson Corporation, the migration procedure
is:

Let the version of the component at this spec’s effect date be N,

1. keep support in the version N and its stable branch,

2. warn on such usage in the version N+1,

3. remove support in the version N+2.

1

For the respective upstream projects of the components, the procedure above shall be
followed if support for such usage is already upstream; "version N" shall be interpreted as
the first release version containing LoongArch support in that case. For the components
not yet upstream, and not interacting with other components that may expect such usage,
support for such usage will never be implemented.

2

Type Size and Alignment

Table 3. LP64 Data Model (base ABI types: lp64d lp64f lp64s)

Scalar type Size (Bytes) Alignment (Bytes)

bool / _Bool 1 1

unsigned char / char 1 1

unsigned short / short 2 2

unsigned int / int 4 4

unsigned long / long 8 8

unsigned long long / long long 8 8

pointer types 8 8

float 4 4

double 8 8

long double 16 16

Table 4. ILP32 Data Model (base ABI types: ilp32d ilp32f ilp32s)

Scalar type Size (Bytes) Alignment (Bytes)

bool / _Bool 1 1

unsigned char / char 1 1

unsigned short / short 2 2

unsigned int / int 4 4

unsigned long / long 4 4

unsigned long long / long long 8 8

pointer types 4 4

float 4 4

double 8 8

long double 16 16

For all base ABI types of LoongArch, the char datatype is signed by default.

3

ELF Object Files
All common ELF definitions referenced in this section can be found in the latest SysV gABI specification.

EI_CLASS: File class

Table 5. ELF file classes

EI_CLASS Value Description

ELFCLASS32 1 ELF32 object file

ELFCLASS64 2 ELF64 object file

e_machine: Identifies the machine

LoongArch (258)

e_flags: Identifies ABI type and version

Table 6. ABI-related bits in e_flags

Bit 31 - 8 Bit 7 - 6 Bit 5 - 3 Bit 2 - 0

(reserved) ABI version ABI extension Base ABI Modifier

The ABI type of an ELF object is uniquely identified by EI_CLASS and e_flags[7:0] in its header.

Within this combination, EI_CLASS and e_flags[2:0] correspond to the base ABI type, where the

expression of C integral and pointer types (data model) is uniquely determined by EI_CLASS value, and

e_flags[2:0] represents additional properties of the base ABI type, including the FP calling convention.

We refer to e_flags[2:0] as the base ABI modifier.

As a result, programs in lp64* / ilp32* ABI should only be encoded with ELF64 / ELF32 object files,
respectively.

0x0 0x4 0x5 0x6 0x7 are reserved values for e_flags[2:0].

Table 7. Base ABI Types

Name EI_CLASS Base ABI
Modifier

(e_flags[2
:0])

Description

lp64s ELFCLASS64 0x1 Uses 64-bit GPRs and the stack for
parameter passing. Data model is LP64,

where long and pointers are 64-bit while

int is 32-bit.

lp64f ELFCLASS64 0x2 Uses 64-bit GPRs, 32-bit FPRs and the stack
for parameter passing. Data model is LP64,

where long and pointers are 64-bit while

int is 32-bit.

4

http://sco.com/developers/gabi/latest/contents.html

Name EI_CLASS Base ABI
Modifier

(e_flags[2
:0])

Description

lp64d ELFCLASS64 0x3 Uses 64-bit GPRs, 64-bit FPRs and the stack
for parameter passing. Data model is LP64,

where long and pointers are 64-bit while

int is 32-bit.

ilp32s ELFCLASS32 0x1 Uses 32-bit GPRs and the stack for
parameter passing. Data model is ILP32,

where int, long and pointers are 32-bit.

ilp32f ELFCLASS32 0x2 Uses 32-bit GPRs, 32-bit FPRs and the stack
for parameter passing. Data model is ILP32,

where int, long and pointers are 32-bit.

ilp32d ELFCLASS32 0x3 Uses 32-bit GPRs, 64-bit FPRs and the stack
for parameter passing. Data model is ILP32,

where int, long and pointers are 32-bit.

e_flags[5:3] correspond to the ABI extension type.

Table 8. ABI Extension types

Name e_flags[5:3] Description

base 0x0 No extra ABI features.

0x1 - 0x7 (reserved)

e_flags[7:6] marks the ABI version of an ELF object.

Table 9. ABI Version

ABI version Value Description

v0 0x0 Stack operands base relocation type.

v1 0x1 Supporting relocation types directly writing to immediate slots.
Can be implemented separately without compatibility with v0.

0x2 0x3 Reserved.

5

Relocations
Table 10. ELF Relocation types

Enum ELF reloc type Usage Detail

0 R_LARCH_NON
E

1 R_LARCH_32 Runtime address resolving *(int32_t *) PC = RtAddr + A

2 R_LARCH_64 Runtime address resolving *(int64_t *) PC = RtAddr + A

3 R_LARCH_REL
ATIVE

Runtime fixup for load-address *(void **) PC = B + A

4 R_LARCH_COP
Y

Runtime memory copy in executable memcpy (PC, RtAddr, sizeof
(sym))

5 R_LARCH_JUM
P_SLOT

Runtime PLT supporting implementation-defined

6 R_LARCH_TLS
_DTPMOD32

Runtime relocation for TLS-GD *(int32_t *) PC = ID of
module defining sym

7 R_LARCH_TLS
_DTPMOD64

Runtime relocation for TLS-GD *(int64_t *) PC = ID of
module defining sym

8 R_LARCH_TLS
_DTPREL32

Runtime relocation for TLS-GD *(int32_t *) PC = DTV-
relative offset for sym

9 R_LARCH_TLS
_DTPREL64

Runtime relocation for TLS-GD *(int64_t *) PC = DTV-
relative offset for sym

10 R_LARCH_TLS
_TPREL32

Runtime relocation for TLE-IE *(int32_t *) PC = T

11 R_LARCH_TLS
_TPREL64

Runtime relocation for TLE-IE *(int64_t *) PC = T

12 R_LARCH_IRE
LATIVE

Runtime local indirect function
resolving

*(void **) PC = (((void
)()()) (B + A)) ()

… Reserved for dynamic linker.

20 R_LARCH_MAR
K_LA

Mark la.abs Load absolute address for static link.

21 R_LARCH_MAR
K_PCREL

Mark external label branch Access PC relative address for static
link.

22 R_LARCH_SOP
_PUSH_PCREL

Push PC-relative offset push (S - PC + A)

23 R_LARCH_SOP
_PUSH_ABSOL

UTE

Push constant or absolute address push (S + A)

24 R_LARCH_SOP
_PUSH_DUP

Duplicate stack top opr1 = pop (), push (opr1),
push (opr1)

6

Enum ELF reloc type Usage Detail

25 R_LARCH_SOP
_PUSH_GPREL

Push for access GOT entry push (G)

26 R_LARCH_SOP
_PUSH_TLS_T

PREL

Push for TLS-LE push (T)

27 R_LARCH_SOP
_PUSH_TLS_G

OT

Push for TLS-IE push (IE)

28 R_LARCH_SOP
_PUSH_TLS_G

D

Push for TLS-GD push (GD)

29 R_LARCH_SOP
_PUSH_PLT_P

CREL

Push for external function calling push (PLT - PC)

30 R_LARCH_SOP
_ASSERT

Assert stack top assert (pop ())

31 R_LARCH_SOP
_NOT

Stack top operation push (!pop ())

32 R_LARCH_SOP
_SUB

Stack top operation opr2 = pop (), opr1 = pop (),
push (opr1 - opr2)

33 R_LARCH_SOP
_SL

Stack top operation opr2 = pop (), opr1 = pop (),
push (opr1 << opr2)

34 R_LARCH_SOP
_SR

Stack top operation opr2 = pop (), opr1 = pop (),
push (opr1 >> opr2)

35 R_LARCH_SOP
_ADD

Stack top operation opr2 = pop (), opr1 = pop (),
push (opr1 + opr2)

36 R_LARCH_SOP
_AND

Stack top operation opr2 = pop (), opr1 = pop (),
push (opr1 & opr2)

37 R_LARCH_SOP
_IF_ELSE

Stack top operation opr3 = pop (), opr2 = pop (),
opr1 = pop (), push (opr1 ?
opr2 : opr3)

38 R_LARCH_SOP
_POP_32_S_1

0_5

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [14 ... 10] = opr1 [4 ...
0]

with check 5-bit signed overflow

39 R_LARCH_SOP
_POP_32_U_1

0_12

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [21 ... 10] = opr1 [11
... 0]

with check 12-bit unsigned overflow

7

Enum ELF reloc type Usage Detail

40 R_LARCH_SOP
_POP_32_S_1

0_12

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [21 ... 10] = opr1 [11
... 0]

with check 12-bit signed overflow

41 R_LARCH_SOP
_POP_32_S_1

0_16

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [25 ... 10] = opr1 [15
... 0]

with check 16-bit signed overflow

42 R_LARCH_SOP
_POP_32_S_1

0_16_S2

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [25 ... 10] = opr1 [17
... 2]

with check 18-bit signed overflow and 4-
bit aligned

43 R_LARCH_SOP
_POP_32_S_5

_20

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [24 ... 5] = opr1 [19 ...
0]

with check 20-bit signed overflow

44 R_LARCH_SOP
_POP_32_S_0
_5_10_16_S2

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [4 ... 0] = opr1 [22 ...
18],

(*(uint32_t *) PC) [25 ...
10] = opr1 [17 ... 2]

with check 23-bit signed overflow and 4-
bit aligned

45 R_LARCH_SOP
_POP_32_S_0
_10_10_16_S

2

Instruction imm-field relocation opr1 = pop (), (*(uint32_t *)
PC) [9 ... 0] = opr1 [27 ...
18],

(*(uint32_t *) PC) [25 ...
10] = opr1 [17 ... 2]

with check 28-bit signed overflow and 4-
bit aligned

46 R_LARCH_SOP
_POP_32_U

Instruction fixup (*(uint32_t *) PC) = pop ()

with check 32-bit unsigned overflow

47 R_LARCH_ADD
8

8-bit in-place addition *(int8_t *) PC += S + A

48 R_LARCH_ADD
16

16-bit in-place addition *(int16_t *) PC += S + A

8

Enum ELF reloc type Usage Detail

49 R_LARCH_ADD
24

24-bit in-place addition *(int24_t *) PC += S + A

50 R_LARCH_ADD
32

32-bit in-place addition *(int32_t *) PC += S + A

51 R_LARCH_ADD
64

64-bit in-place addition *(int64_t *) PC += S + A

52 R_LARCH_SUB
8

8-bit in-place subtraction *(int8_t *) PC -= S + A

53 R_LARCH_SUB
16

16-bit in-place subtraction *(int16_t *) PC -= S + A

54 R_LARCH_SUB
24

24-bit in-place subtraction *(int24_t *) PC -= S + A

55 R_LARCH_SUB
32

32-bit in-place subtraction *(int32_t *) PC -= S + A

56 R_LARCH_SUB
64

64-bit in-place subtraction *(int64_t *) PC -= S + A

57 R_LARCH_GNU
_VTINHERIT

GNU C++ vtable hierarchy

58 R_LARCH_GNU
_VTENTRY

GNU C++ vtable member usage

… Reserved

64 R_LARCH_B16 18-bit PC-relative jump (*(uint32_t *) PC) [25 ...
10] = (S+A-PC) [17 ... 2]

with check 18-bit signed overflow and 4-
bit aligned

65 R_LARCH_B21 23-bit PC-relative jump (*(uint32_t *) PC) [4 ... 0]
= (S+A-PC) [22 ... 18],

(*(uint32_t *) PC) [25 ...
10] = (S+A-PC) [17 ... 2]

with check 23-bit signed overflow and 4-
bit aligned

66 R_LARCH_B26 28-bit PC-relative jump (*(uint32_t *) PC) [9 ... 0]
= (S+A-PC) [27 ... 18],

(*(uint32_t *) PC) [25 ...
10] = (S+A-PC) [17 ... 2]

with check 28-bit signed overflow and 4-
bit aligned

67 R_LARCH_ABS
_HI20

[31 … 12] bits of 32/64-bit absolute
address

(*(uint32_t *) PC) [24 ... 5]
= (S+A) [31 ... 12]

9

Enum ELF reloc type Usage Detail

68 R_LARCH_ABS
_LO12

[11 … 0] bits of 32/64-bit absolute
address

(*(uint32_t *) PC) [21 ...
10] = (S+A) [11 ... 0]

69 R_LARCH_ABS
64_LO20

[51 … 32] bits of 64-bit absolute address (*(uint32_t *) PC) [24 ... 5]
= (S+A) [51 ... 32]

70 R_LARCH_ABS
64_HI12

[63 … 52] bits of 64-bit absolute address (*(uint32_t *) PC) [21 ...
10] = (S+A) [63 ... 52]

71 R_LARCH_PCA
LA_HI20

[31 … 12] bits of 32/64-bit PC-relative
offset

(*(uint32_t *) PC) [24 ... 5]
= (((S+A) & ~0xfff) - (PC &
~0xfff)) [31 ... 12]

Note: The lower 12 bits are
not included when calculating
the PC-relative offset.

72 R_LARCH_PCA
LA_LO12

[11 … 0] bits of 32/64-bit address (*(uint32_t *) PC) [21 ...
10] = (S+A) [11 ... 0]

73 R_LARCH_PCA
LA64_LO20

[51 … 32] bits of 64-bit PC-relative offset (*(uint32_t *) PC) [24 ... 5]
= (S+A - (PC & ~0xffffffff))
[51 ... 32]

74 R_LARCH_PCA
LA64_HI12

[63 … 52] bits of 64-bit PC-relative offset (*(uint32_t *) PC) [21 ...
10] = (S+A - (PC &
~0xffffffff)) [63 ... 52]

75 R_LARCH_GOT
_PC_HI20

[31 … 12] bits of 32/64-bit PC-relative
offset to GOT entry

(*(uint32_t *) PC) [24 ... 5]
= (((GP+G) & ~0xfff) - (PC &
~0xfff)) [31 ... 12]

76 R_LARCH_GOT
_PC_LO12

[11 … 0] bits of 32/64-bit GOT entry
address

(*(uint32_t *) PC) [21 ...
10] = (GP+G) [11 ... 0]

77 R_LARCH_GOT
64_PC_LO20

[51 … 32] bits of 64-bit PC-relative offset
to GOT entry

(*(uint32_t *) PC) [24 ... 5]
= (GP+G - (PC & ~0xffffffff))
[51 ... 32]

78 R_LARCH_GOT
64_PC_HI12

[63 … 52] bits of 64-bit PC-relative offset
to GOT entry

(*(uint32_t *) PC) [21 ...
10] = (GP+G - (PC &
~0xffffffff)) [63 ... 52]

79 R_LARCH_GOT
_HI20

[31 … 12] bits of 32/64-bit GOT entry
absolute address

(*(uint32_t *) PC) [24 ... 5]
= (GP+G) [31 ... 12]

80 R_LARCH_GOT
_LO12

[11 … 0] bits of 32/64-bit GOT entry
absolute address

(*(uint32_t *) PC) [21 ...
10] = (GP+G) [11 ... 0]

81 R_LARCH_GOT
64_LO20

[51 … 32] bits of 64-bit GOT entry
absolute address

(*(uint32_t *) PC) [24 ... 5]
= (GP+G) [51 ... 32]

82 R_LARCH_GOT
64_HI12

[63 … 52] bits of 64-bit GOT entry
absolute address

(*(uint32_t *) PC) [21 ...
10] = (GP+G) [63 ... 52]

10

Enum ELF reloc type Usage Detail

83 R_LARCH_TLS
_LE_HI20

[31 … 12] bits of TLS LE 32/64-bit offset
from TP register

(*(uint32_t *) PC) [24 ... 5]
= T [31 ... 12]

84 R_LARCH_TLS
_LE_LO12

[11 … 0] bits of TLS LE 32/64-bit offset
from TP register

(*(uint32_t *) PC) [21 ...
10] = T [11 ... 0]

85 R_LARCH_TLS
_LE64_LO20

[51 … 32] bits of TLS LE 64-bit offset
from TP register

(*(uint32_t *) PC) [24 ... 5]
= T [51 ... 32]

86 R_LARCH_TLS
_LE64_HI12

[63 … 52] bits of TLS LE 64-bit offset
from TP register

(*(uint32_t *) PC) [21 ...
10] = T [63 ... 52]

87 R_LARCH_TLS
_IE_PC_HI20

[31 … 12] bits of 32/64-bit PC-relative
offset to TLS IE GOT entry

(*(uint32_t *) PC) [24 ... 5]
= (((GP+IE) & ~0xfff) - (PC &
~0xfff)) [31 ... 12]

88 R_LARCH_TLS
_IE_PC_LO12

[11 … 0] bits of 32/64-bit TLS IE GOT
entry address

(*(uint32_t *) PC) [21 ...
10] = (GP+IE) [11 ... 0]

89 R_LARCH_TLS
_IE64_PC_LO

20

[51 … 32] bits of 64-bit PC-relative offset
to TLS IE GOT entry

(*(uint32_t *) PC) [24 ... 5]
= (GP+IE - (PC &
~0xffffffff)) [51 ... 32]

90 R_LARCH_TLS
_IE64_PC_HI

12

[63 … 52] bits of 64-bit PC-relative offset
to TLS IE GOT entry

(*(uint32_t *) PC) [21 ...
10] = (GP+IE - (PC &
~0xffffffff)) [63 ... 52]

91 R_LARCH_TLS
_IE_HI20

[31 … 12] bits of 32/64-bit TLS IE GOT
entry absolute address

(*(uint32_t *) PC) [24 ... 5]
= (GP+IE) [31 ... 12]

92 R_LARCH_TLS
_IE_LO12

[11 … 0] bits of 32/64-bit TLS IE GOT
entry absolute address

(*(uint32_t *) PC) [21 ...
10] = (GP+IE) [11 ... 0]

93 R_LARCH_TLS
_IE64_LO20

[51 … 32] bits of 64-bit TLS IE GOT entry
absolute address

(*(uint32_t *) PC) [24 ... 5]
= (GP+IE) [51 ... 32]

94 R_LARCH_TLS
_IE64_HI12

[63 … 52] bits of 64-bit TLS IE GOT entry
absolute address

(*(uint32_t *) PC) [21 ...
10] = (GP+IE) [63 ... 52]

95 R_LARCH_TLS
_LD_PC_HI20

[31 … 12] bits of 32/64-bit PC-relative
offset to TLS LD GOT entry

(*(uint32_t *) PC) [24 ... 5]
= (((GP+GD) & ~0xfff) - (PC &
~0xfff)) [31 ... 12]

96 R_LARCH_TLS
_LD_HI20

[31 … 12] bits of 32/64-bit TLS LD GOT
entry absolute address

(*(uint32_t *) PC) [24 ... 5]
= (GP+IE) [31 ... 12]

97 R_LARCH_TLS
_GD_PC_HI20

[31 … 12] bits of 32/64-bit PC-relative
offset to TLS GD GOT entry

(*(uint32_t *) PC) [24 ... 5]
= (((GP+GD) & ~0xfff) - (PC &
~0xfff)) [31 ... 12]

98 R_LARCH_TLS
_GD_HI20

[31 … 12] bits of 32/64-bit TLS GD GOT
entry absolute address

(*(uint32_t *) PC) [24 ... 5]
= (GP+IE) [31 ... 12]

99 R_LARCH_32_
PCREL

32-bit PC relative (*(uint32_t *) PC) = (S+A-PC)
[31 ... 0]

11

Enum ELF reloc type Usage Detail

100 R_LARCH_REL
AX

Instruction can be relaxed, paired with a
normal relocation at the same address

12

Program Interpreter Path
Table 11. Standard Program Interpreter Paths

Base ABI type ABI extension
type

Operating system / C library Program interpreter path

lp64d base Linux, Glibc /lib64/ld-linux-loongarch-
lp64d.so.1

lp64f base Linux, Glibc /lib64/ld-linux-loongarch-
lp64f.so.1

lp64s base Linux, Glibc /lib64/ld-linux-loongarch-
lp64s.so.1

ilp32d base Linux, Glibc /lib32/ld-linux-loongarch-
ilp32d.so.1

ilp32f base Linux, Glibc /lib32/ld-linux-loongarch-
ilp32f.so.1

ilp32s base Linux, Glibc /lib32/ld-linux-loongarch-
ilp32s.so.1

13

Procedure Calling Convention

Abbreviations

In this document, GRLEN is the bit width of general-purpose register, FRLEN is the bit width of floating-point
register and WOA is the bit width of the argument. The general-purpose argument register is denoted as
GAR and the floating-point argument register is denoted as FAR.

Argument Registers

The basic principle of the LoongArch procedure calling convention is to pass arguments in registers as
much as possible (i.e. floating-point arguments are passed in floating-point registers and non floating-point
arguments are passed in general-purpose registers, as much as possible); arguments are passed on the
stack only when no appropriate register is available.

The argument registers are:

1. Eight floating-point registers fa0-fa7 used for passing pass floating-point arguments, and fa0-fa1
are also used to return values.

2. Eight general-purpose registers a0-a7 used for passing pass integer arguments, with a0-a1 reused to
return values.

Generally, the GARs are used to pass fixed-point arguments, and floating-point arguments when no FAR is
available. Bit fields are stored in little endian. In addition, subroutines should ensure that the values of

general-purpose registers s0-s9 and floating-point registers fs0-fs7 are preserved across procedure
calls.

ABI LP64D

That is, GRLEN = 64, FRLEN = 64.

C Data Types and Alignment

The C data types and alignment in the LP64D ABI are defined in the table 3.

In most cases, the unsigned integer data types are zero-extended when stored in general-purpose register,
and the signed integer data types are sign-extended. However, in the LP64D ABI, unsigned 32-bit types,

such as unsigned int, are stored in general-purpose registers as proper sign extensions of their 32-bit
values.

Argument passing

Generally speaking, FARs are only used to pass floating-point arguments, GARs are used to pass non

floating-point arguments and floating-point arguments when no FAR is available(long double type is also
passed in a pair of GARs) and the reference.

Arguments passed by reference may be modified by the callee.

Scalar

There are two cases:

1. 0 < WOA ≤ GRLEN

14

a. Argument is passed in a single argument register, or on the stack by value if none is available.

i. If the argument is floating-point type, the argument is passed in FAR. if no FAR is available, it’s
passed in GAR. If no GAR is available, it’s passed on the stack. When passed in registers or on
the stack, floating-point types narrower than GRLEN bits are widened to GRLEN bits, with the
upper bits undefined.

ii. If the argument is integer or pointer type, the argument is passed in GAR. If no GAR is available,
it’s passed on the stack. When passed in registers or on the stack, the unsigned integer scalars
narrower than GRLEN bits are zero-extended to GRLEN bits, and the signed integer scalars are
sign-extended.

2. GRLEN < WOA ≤ 2 × GRLEN

a. The argument is passed in a pair of GAR, with the low-order GRLEN bits in the lower-numbered
register and the high-order GRLEN bits in the higher-numbered register. If exactly one register is
available, the low-order GRLEN bits are passed in the register and the high-order GRLEN bits are
passed on the stack. If no GAR is available, it’s passed on the stack.

Structure

Empty structures are ignored by C compilers which support them as a non-standard extension(same as
union arguments and return values). Bits unused due to padding, and bits past the end of a structure whose
size in bits is not divisible by GRLEN, are undefined. And the layout of the structure on the stack is
consistent with that in memory.

1. 0 < WOA ≤ GRLEN

a. The structure has only fixed-point members. If there is an available GAR, the structure is passed
through the GAR by value passing; If no GAR is available, it’s passed on the stack.

b. The structure has only floating-point members:

i. One floating-point member. The argument is passed in a FAR; If no FAR is available, the value is
passed in a GAR; if no GAR is available, the value is passed on the stack.

ii. Two floating-point members. The argument is passed in a pair of available FAR, with the low-

order float member bits in the lower-numbered FAR and the high-order float member bits in
the higher-numbered FAR. If the number of available FAR is less than 2, it’s passed in a GAR,
and passed on the stack if no GAR is available.

c. The structure has both fixed-point and floating-point members, i.e. the structure has one float
member and…

i. Multiple fixed-point members. If there are available GAR, the structure is passed in a GAR, and
passed on the stack if no GAR is available.

ii. Only one fixed-point member. If one FAR and one GAR are available, the floating-point member
of the structure is passed in the FAR, and the integer member of the structure is passed in the
GAR; If no floating-point register but one GAR is available, it’s passed in GAR; If no GAR is
available, it’s passed on the stack.

2. GRLEN < WOA ≤ 2 × GRLEN

a. Only fixed-point members.

i. The argument is passed in a pair of available GAR, with the low-order bits in the lower-
numbered GAR and the high-order bits in the higher-numbered GAR. If only one GAR is available,
the low-order bits are in the GAR and the high-order bits are on the stack, and passed on the
stack if no GAR is available.

b. Only floating-point members.

i. The structure has one long double member or one double member and two adjacent

float members or 3-4 float members. The argument is passed in a pair of available GAR,
with the low-order bits in the lower-numbered GAR and the high-order bits in the higher-
numbered GAR. If only one GAR is available, the low-order bits are in the GAR and the high-order

15

bits are on the stack, and passed on the stack if no GAR is available.

ii. The structure with two double members is passed in a pair of available FARs. If no a pair of

available FARs, it’s passed in GARs. A structure with one double member and one float
member is same.

c. Both fixed-point and floating-point members.

i. The structure has one double member and only one fixed-point member.

A. If one FAR and one GAR are available, the floating-point member of the structure is passed
in the FAR, and the integer member of the structure is passed in the GAR; If no floating-point
registers but two GARs are available, it’s passed in the two GARs; If only one GAR is
available, the low-order bits are in the GAR and the high-order bits are on the stack; And it’s
passed on the stack if no GAR is available.

ii. Others

A. The argument is passed in a pair of available GAR, with the low-order bits in the lower-
numbered GAR and the high-order bits in the higher-numbered GAR. If only one GAR is
available, the low-order bits are in the GAR and the high-order bits are on the stack, and
passed on the stack if no GAR is available.

3. WOA > 2 × GRLEN

a. It’s passed by reference and are replaced in the argument list with the address. If there is an
available GAR, the reference is passed in the GAR, and passed on the stack if no GAR is available.

Structure and scalars passed on the stack are aligned to the greater of the type alignment and GRLEN bits,
but never more than the stack alignment.

Union

Union is passed in GAR or stack.

1. 0 < WOA ≤ GRLEN

a. The argument is passed in a GAR, or on the stack by value if no GAR is available.

2. GRLEN < WOA ≤ 2 × GRLEN

a. The argument is passed in a pair of available GAR, with the low-order bits in the lower-numbered
GAR and the high-order bits in the higher-numbered GAR. If only one GAR is available, the low-order
bits are in the GAR and the high-order bits are on the stack. The arguments are passed on the stack
when no GAR is available.

3. WOA > 2 × GRLEN

a. It’s passed by reference and are replaced in the argument list with the address. If there is an
available GAR, the reference is passed in the GAR, and passed on the stack if no GAR is available.

Complex

A complex floating-point number, or a structure containing just one complex floating-point number, is
passed as though it were a structure containing two floating-point reals.

Variadic arguments

Variadic arguments are passed in GARs in the same manner as named arguments. And after a variadic
argument has been passed on the stack, all future arguments will also be passed on the stack, i.e., the last
argument register may be left unused due to the aligned register pair rule.

1. 0 < WOA ≤ GRLEN

a. The variadic arguments are passed in a GAR, or on the stack by value if no GAR is available.

16

2. GRLEN < WOA ≤ 2 × GRLEN

a. The variadic arguments are passed in a pair of GARs. If only one GAR is available, the low-order bits
are in the GAR and the high-order bits are on the stack, and passed on the stack if no GAR is

available. or on the stack by value if none is available. It should be noted that long double data
tpye is passed in an aligned GAR pair(the first register in the pair is even-numbered).

3. WOA > 2 × GRLEN

a. It’s passed by reference and are replaced in the argument list with the address. If there is an
available GAR, the reference is passed in the GAR, and passed on the stack if no GAR is available.

Return values

1. Generally speaking, a0 and a1 are used to return non floating-point values, and fa0 and fa1 are used
to return floating-point values.

2. Values are returned in the same manner as a first named argument of the same type would be passed.
If such an argument would have been passed by reference, the caller allocates memory for the return
value, and passes the address as an implicit first argument.

3. The reference of the return value is returned that is stored in GAR a0 if the size of the return value is
larger than 2×GRLEN bits.

Stack

1. In general, the stack frame for a subroutine may contain space to contain the following:

a. Space to store arguments passed to subroutines that this subroutine calls.

b. A place to store the subroutine’s return address.

c. A place to store the values of saved registers.

d. A place for local data storage.

2. The stack grows downwards (towards lower addresses) and the stack pointer shall be aligned to a 128-
bit boundary upon procedure entry. The first argument passed on the stack is located at offset zero of
the stack pointer on function entry; following arguments are stored at correspondingly higher
addresses.

3. Procedures must not rely upon the persistence of stack-allocated data whose addresses lies below the
stack pointer.

17

Appendix: Revision History
• v1.00

◦ Add register usage convention, data type conventions and the list of ELF relocation types.

• v2.00

◦ Add description of ILP32 data model.

◦ Add description of return value register aliases.

◦ Add relocation types with direct immediate-filling semantics.

◦ Add ABI version porting guidelines for toolchain implementations.

◦ Add link to SysV gABI documentation.

◦ Adjust asciidoc code style.

• v2.01

◦ Adjust description of ABI type encoding scheme.

◦ Add header for all tables.

18

	LoongArch ELF ABI specification
	Table of Contents
	Register Convention
	Aliases for return value registers

	Type Size and Alignment
	ELF Object Files
	EI_CLASS: File class
	e_machine: Identifies the machine
	e_flags: Identifies ABI type and version

	Relocations
	Program Interpreter Path
	Procedure Calling Convention
	Abbreviations
	Argument Registers
	ABI LP64D
	C Data Types and Alignment
	Argument passing
	Return values
	Stack

	Appendix: Revision History

